Transport Layer Function
* Ports: (Part of the Transport Layer in the TCP/IP model, but of the Session Layer in the OSI model) Ports are essentially ways to address multiple entities in the same location. For example, the first line of a postal address is a kind of port, and distinguishes between different occupants of the same house. Computer applications will each listen for information on their own ports, which is why you can use more than one network-based application at the same time.* Same Order Delivery: The Network layer doesn't generally guarantee that packets of data will arrive in the same order that they were sent, but often this is a desirable feature, so the Transport Layer provides it. The simplest way of doing this is to give each packet a number, and allow the receiver to reorder the packets.
* Reliable data: Packets may be lost in routers, switches, bridges and hosts due to network congestion, when the packet queues are filled and the network nodes have to delete packets. Packets may be lost or corrupted in Ethernet due to interference and noise, since Ethernet does not retransmit corrupted packets. Packets may be delivered in the wrong order by an underlying network. Some Transport Layer protocols, for example TCP, can fix this. By means of an error detection code, for example a checksum, the transport protocol may check that the data is not corrupted, and verify that by sending an ACK message to the sender. Automatic repeat request schemes may be used to retransmit lost or corrupted data. By introducing segment numbering in the Transport Layer packet headers, the packets can be sorted in order. Of course, error free is impossible, but it is possible to substantially reduce the numbers of undetected errors.
* Connection-oriented: This is normally easier to deal with than connection-less models, so where the Network layer only provides a connection-less service, often a connection-oriented service is built on top of that in the Transport Layer.
* Flow control: The amount of memory on a computer is limited, and without flow control a larger computer might flood a computer with so much information that it can't hold it all before dealing with it. Nowadays, this is not a big issue, as memory is cheap while bandwidth is comparatively expensive, but in earlier times it was more important. Flow control allows the receiver to say "Whoa!" before it is overwhelmed. Sometimes this is already provided by the network, but where it is not, the Transport Layer may add it on.
* Congestion avoidance: Network congestion occurs when a queue buffer of a network node is full and starts to drop packets. Automatic repeat request may keep the network in a congested state. This situation can be avoided by adding congestion avoidance to the flow control, including slow-start. This keeps the bandwidth consumption at a low level in the beginning of the transmission, or after packet retransmission.
* Byte orientation: Rather than dealing with things on a packet-by-packet basis, the Transport Layer may add the ability to view communication just as a stream of bytes. This is nicer to deal with than random packet sizes, however, it rarely matches the communication model which will normally be a sequence of messages of user defined sizes.